Sensitivity of Human Melanoma to Tumor Necrosis In Vivo
نویسندگان
چکیده
Tumor necrosis factor (TNF)-a is a potent anticancer agent that seems to selectively target tumor-associated vasculature resulting in hemorrhagic necrosis of tumors without injury to surrounding tissues. The major limitation in the clinical use of TNF has been severe dose-limiting toxicity when administered systemically. However, when administered in isolated organ perfusion it results in regression of advanced bulky tumors. A better understanding of the mechanisms of TNF-induced antitumor effects may provide valuable information into how its clinical use in cancer treatment may be expanded. We describe here that the release of a novel tumor-derived cytokine endothelial-monocyte-activating polypeptide II (EMAPII) renders the tumor-associated vasculature sensitive to TNF. EMAPII has the unique ability to induce tissue factor production by tumor vascular endothelial cells that initiates thrombogenic cascades, which may play a role in determining tumor sensitivity to TNF. We demonstrate here that constituitive overexpression of EMAPII in a TNF-resistant human melanoma line by retroviral-mediated transfer of EMAPII cDNA renders the tumor sensitive to the effects of systemic TNF in vivo, but not in vitro. This interaction between tumors and their associated neovasculature provides an explanation for the focal effects of TNF on tumors and possibly for the variable sensitivity of tumors to bioactive agents.
منابع مشابه
Evaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer
Objective(s): Despite recent advances in treatment modalities, cancer remains a major source of morbidity and mortality throughout the world. Currently, the development of sensitive and specific molecular imaging probes for early diagnosis of cancer is still a problematic challenge. Previous studies have been shown that some of the antimicrobial peptides (AMPs) exhibit...
متن کاملSUSCEPTIBILITY OF HUMAN WM MELANOMA CELL LINES TO NK AND LAK CYTOTOXICITY AND THEIR RELEVANCE TO THE LEVEL OF MHC CLASS I AND ICAM-l ANTIGEN EXPRESSION
The effect of natural killer (NK) cells and lymphokine activated killer ( LAK) cells was studied on a group of human melanoma cell lines. Peripheral blood from healthy volunteers was utilized as a fresh source of natural killer cells and rhI L-2 for producing LAK cells. The cytotoxicity of effector cells was quantified using a 4 hour SI determining the density of antigen expression on tumor...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملIn vivo sensitivity of human melanoma to tumor necrosis factor (TNF)-alpha is determined by tumor production of the novel cytokine endothelial-monocyte activating polypeptide II (EMAPII).
Tumor necrosis factor (TNF)-alpha is a potent anticancer agent that seems to selectively target tumor-associated vasculature resulting in hemorrhagic necrosis of tumors without injury to surrounding tissues. The major limitation in the clinical use of TNF has been severe dose-limiting toxicity when administered systemically. However, when administered in isolated organ perfusion it results in r...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کامل